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ABSTRACT 

 

Finite element analysis was implemented to evaluate the transverse shear 

modulus of a unidirectional glass/epoxy fiber-matrix composite based on pure shear 

displacement boundary conditions.  Unit cells consisting of three-dimensional glass 

cylinders surrounded in square-cuboid epoxy matrices were modeled to represent 

“Representative Volume Element” (RVE) configurations in periodic and random-

periodic square cell arrangements of variable size.  Three RVEs were constructed and 

analyzed:  A single unit cell, a 9-cell (3 x 3) array, and a 25-cell (5 x 5) array.  

Additionally, the unit cell was modeled to include an interphase.  Three sets of cell 

arrangements were constructed and evaluated:  a periodic square array, a 

transversely distributed random-periodic array, and a variable angularly aligned 

random-periodic array.  Furthermore, scale and free-edge effects of the composites 

were studied by evaluating the shear modulus in incrementally increasing domains, 

as well as by isolating finite-sized domains called windows within the multiple-cell 

model, whereby the window is smaller than the array.  Finite element software was 

subsequently utilized to create a three-dimensional mesh of the composite models 

studied.  Each simulation consisted of exposing the respective domain to pure shear 

boundary conditions, whereby the model was subject to uniform transverse 

displacement along its boundary.  Subsequent volumetric averaging resulted in 

computation of the apparent transverse shear modulus.  The resulting numerically 

attained elastic shear modulus was then evaluated and compared to known 

predictive models in literature.  It was shown that that the transverse random 
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arrangement as well the random angular alignment of fibers within the composite 

structure had a marginal influence on the shear modulus. For random transverse 

distributions, a deviation in modulus of +1.5% was observed for the 25-cell array as 

compared to a periodic array of equal size.  Similarly, a deviation of +0.3% was 

predicted for 25-cell arrays subject to random angular fiber misalignments up to 

±0.143°, as compared 25-cell periodic arrays.   Furthermore, increasing the 

composite medium by systematic, incremental augmentation model domains was 

shown to significantly lower the shear modulus in a convergent manner as G23 values 

dropped 33.5% from the nonhomogeneous single cell to the 9-cell model, and 2.6% 

from the same 9-cell to the 25-cell model, while observing the effects of a mesoscale 

window displayed little variance in modulus value as compared to the larger RVE 

from which the window was isolated from.  Lastly, the predictive potential of the 

model developed by Sutcu for composites with interphases, and other commonly 

employed models for predicting the transverse shear modulus of unidirectional 

composites was also evaluated.  Numerical results of nonhomogeneous interphase 

models for both periodic and random-periodic 25-cell arrays were found to be in 

excellent agreement with Sutcu’s approximation.  The shear modulus of the 25-cell, 

nonhomogeneous interphase model was found to lie within 3.5% of Sutcu’s 

prediction.  Volume averages for periodic arrays with no interphase were observed to 

lie in close proximity to Halpin-Tsai’s model, displaying a variation of 7% for a 25-

cell, single fiber model.
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CHAPTER 1   LITERATURE REVIEW 

 

1.1 Introduction 

Current mechanical and structural designs made of low density, strong, and 

stiff composite bodies bring forth the need for accurate prediction of equivalent 

elastic properties.  While elaborate and often expensive experimental testing 

techniques exist today, it is often required to attain accurate approximations of the 

elastic properties of a composite in early to middle stages of engineering design, 

prior to committing to experimental validation through testing of a sample specimen 

in the final stages of design.   

An abundance of research has been devoted to obtaining predictions of 

equivalent moduli of composite media.  Analytical solutions using classic elastic 

theory resulted in widely accepted models for obtaining the elastic moduli of 

unidirectional composites.  However, much debate still exists on recent efforts in 

predictions involving the transverse shear modulus of composite materials (see 

Hashin [23], for example).  Thenceforth, a brief literature review of common 

approximation models is presented and discussed here. 

A majority of materials used in engineering design and mechanical/structural 

assembly fall into two major categories:  Isotropic and Orthotropic materials. Such 

materials are either homogeneous or nonhomogeneous.  A homogeneous material 

has identical physical properties at any point in a body, whereas a nonhomogeneous 

material exhibits physical properties as a function of position within the body.  An 

isotropic material possesses identical properties in all directions along a globally
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defined coordinate system.  For example, consider the isotropic solid block in Figure 

1. 

 

 

 

Figure 1 – Isotropic Solid Cuboid Subject to Pure Shear Loading 
 

 

The global coordinate system is defined by the 1, 2, and 3 axes, respectively.  

In this solid, all physical properties are the same in all three coordinate directions.  



www.manaraa.com

3 
 

An important class of physical properties in engineering analysis is elastic moduli.  

For bodies that are considered linear elastic and subject to only small deformations, 

the displacements, stresses, and strains within such bodies are defined by Hooke’s 

Law, compatibility conditions, and force equilibrium equations as 15 unknown 

parameters at any point in a homogeneous body [19].  For linearly isotropic 

materials the aforementioned constants are defined solely by Young’s modulus E and 

Poisson’s ratio ν.  The shear modulus G of an isotropic solid is a function of both E 

and ν, and is defined by the expression: 

 

                                             
)2(1

E
G


                                                                             (1) 

 

Consider the cuboid solid in Figure 1 subject to a state of pure shear loading, 

whereby a shear stress of 23  is applied to 2-3 plane as shown.  Correspondingly, 

the shear modulus may also be expressed by the stress-strain relation: 

 

                                                   
23

23G



                                                                                (2) 

 

where τ23 and γ23 denote the shear stress and shear strain in the 2-3 plane, 

respectively.  It is of importance to note here that the shear modulus is the same in 

all planes for isotropic materials, i.e. G23 = G31 = G12 = G.   

Orthotropic materials, on the other hand, consist of “three mutually 

perpendicular planes of material symmetry” [19].  Thus, an orthotropic material has 

identical elastic properties in all directions in three mutually perpendicular planes, 

respectively [19].  In this case, the 15 unknown parameters in a linearly elastic body 
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are defined by nine independent elastic constants [19].  Figure 2 shows an example 

of an orthotropic body.   

 

 

Figure 2 – Unidirectional Fiber Composite (Orthotropic Material) 

 

 

Figure 2 describes a single composite body consisting of a continuous 

cylindrical fiber that is embedded in a square cuboid material called the matrix, 

which is dissimilar from the fiber material.  Both individual constituent materials in 
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this example are isotropic; however, such composite laminated materials may also 

be comprised of transversely isotropic phase materials.  An example of a composite 

consisting of isotropic constituents is a glass/epoxy composite [19].  Conversely, an 

example of a composite consisting of an isotropic matrix with transversely isotropic 

fibers is a graphite/epoxy composite body.  Further distinction can be made with 

orthotropic materials with uniaxially aligned fiber composites, as such bodies exhibit 

identical elastic properties in the two directions perpendicular to the fiber [19].  Such 

materials are considered transversely isotropic.  Resultantly, the shear moduli in the 

1-2 and 1-3 are identical; however, the shear modulus in the 2-3 plane is not.  Thus, 

distinction is made between the so called longitudinal shear modulus G12 = G13, and 

the transverse shear modulus G23. 

 

1.2 Predictive Models of Transverse Shear Modulus of Fiber Reinforced 
Composites 
 
As a preface to presenting the findings of the subject at hand, it is necessary 

to review and discuss relevant predictive models that can be found in literature 

today.  We begin our discussion with a brief review of the Halpin-Tsai [1] and 

Christensen [2] models for predicting the transverse shear modulus of unidirectional 

composites with no interphase, followed by Sutcu’s approximation which includes 

considerations of fiber reinforced composites with multiple interphases.  Central to 

the discussion will be the inherent complexity in determining an exact deterministic 

theoretical value of the aforementioned elastic constant.  Subsequent discussion will 

then focus on comparing the results of finite element method (FEM) models 

developed for this thesis to the aforementioned approximations.  Indeed, if it is 

possible to confirm the accuracy and applicability of pertinent theoretical models, it 

would improve the efficiency in designing mechanical and structural composite 

bodies.  Moreover, it would be of great benefit to design engineers and researchers 
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alike to achieve accurate modulus values numerically using finite element modeling 

and analysis techniques.  The goal is to validate predictive modulus values found in 

literature as well as develop a more involved and complex finite element simulation 

models for determining the transverse shear modulus of a macroscopically 

homogenous unidirectional composite subject to variation of its geometric 

parameters.      

 

1.2.1    Halpin-Tsai Model 

The first approximation discussed is the Halpin-Tsai model [1].  The Halpin-

Tsai equations are based on a semi-empirical model that utilizes curve fitting of an 

undetermined parameter to experimental data.  Specifically, in addition to the fiber 

and matrix elastic moduli, the fitted parameter varies according to the geometric 

cross-section, packing distribution, and orientation of the fiber within the matrix. 

Halpin-Tsai [1] mentions that the micromechanics employed in this approach are 

based upon the Self-Consisted Method (SCS) first developed by Hill [24].  “Halpin 

and Tsai subsequently reduced Hill’s results to a simpler analytical form and 

extended its use to a variety of reinforcement geometries” [1].     

Hill [24] modeled the composite as a single fiber, enveloped in a cylindrical 

matrix that is embedded in an infinitely large homogeneous medium, as shown in 

Figure 3.  It is important to note that “homogeneous medium” implies that the 

composite is considered macroscopically or statistically homogeneous; this means 

that all global geometrical characteristics such as fiber and matrix volume fractions 

are the same for any Representative Volume Element (RVE).  A RVE describes a 

three-dimensional unit cell consisting of two unidirectional and concentric cylinders, 

where the cylindrical fiber is enclosed by a cylindrical matrix as is displayed in Figure 

3.    
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Figure 3 – Halpin-Tsai Self-Consistent Scheme (SCS) Model 

 

However, complexity arises with the SCS model for determining the 

transverse shear modulus G23.  The boundary conditions on the homogeneous 

medium are one of pure shear loading such that 

 

                                         ttancons0
xy                                               (3) 

  

with all other stresses vanishing, as rearticulated by Whitney and McCullough [5].  

xy is defined identically as is displayed in Figure 1, with the exceptions being that 

the shear stress refers to xyz axes in lieu of the 123 coordinate system, and the 
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shear stress is applied at an infinite distance from the matrix in the equivalent 

homogeneous medium (referring to Figure 3).  Equation (3) leads to the following 

surface stresses for both the homogeneous medium and the composite cylinders.  

Rewriting Equation (3) in polar form we get 

 

                                                   2sin00
r                                                                   (4a)                                                           

                                                    2cos00
r                                               (4b)                   

                                                  

where σr and τrθ are related to the Cartesian coordinate system as depicted in Figure 

4. 

 

Figure 4 – Shear Stress Components in Polar Coordinates 

 

Note that the z axis (into the page) in Figure 4 is omitted for clarity.  

Additionally, both cylinders are assumed to be in a state of plane strain such that 
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                                  0uz  , ),r(uu rr  , ),r(uu                             (5a - c) 

 

where uz, ur, and uθ define the displacements in the z, r, and  directions.  The set of 

differential equations emerging from elastic theory which must satisfy conditions of 

continuity, compatibility, equilibrium of forces, and Hooke’s Law cannot be satisfied 

simultaneously because each equation produces a different expression for G23.  In 

other words, a unique solution does not exist.  This is to be interpreted physically 

that the continuity conditions between the RVE and the homogeneous medium are 

not completely satisfied.  Thus, the SCS model is incapable of determining the value 

of G23.  This led to a modification of the original SCS model by Hermans [20] that 

was later adopted by Halpin [1] who assumed that the average transverse shear 

modulus of a free concentric cylinder subject to arbitrary surface stresses provides a 

reasonable estimate of G23.  More specifically, strain and stress is assumed constant 

within the boundaries of the cylindrical fiber inclusion.   Thus, Equations (4a) and 

(4b) are altered slightly such that (per [5]): 

 

                                                     2sinA0
r                                               (6a)         

                                      2cosB0
r                                                (6b)                                                                    

 

where A and B are arbitrary constants.  These boundary conditions along with 

assumption of plane strain led to the equation for the transverse modulus G23 (upon 

solving the force equilibrium equations) as formulated by Chow and Hermans [20] in 

its final form as 

 

                         
)G+G(kV+GGV2+)G+k(GV2

)G+G(kV+GV2+)G+k(GV2
G=G

mfmmmfmmfmf

mfmmmmmfff
m23                    (7)                                   
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where the subscripts f and m denote the fiber phase and matrix phase, respectively, 

and 

 

 =G23  Equivalent transverse shear modulus of composite cylinder 

 =Vi Volume fraction of phase constituent             

 =Gi Shear modulus of phase constituent 

 =k i Plane strain bulk modulus of phase constituent 

 i = f for fiber and m for matrix 

 

It should be further clarified that the bulk modulus ki of the phase constituent 

under longitudinal plane strain is 

 

                                                                
)21)(1(2

E
k

ii

i
i




-
                                           (8)                                                                             

 

where Ei and vi denote the Young’s modulus and Poisson’s ratio of the constituents, 

respectively.  Halpin-Tsai’s rearticulation of Hermans’ Equation (7) incorporated the 

term  , called the reinforcing factor, which depends on fiber geometry, packing 

geometry, and loading conditions.  Reliable estimates for   can be obtained by 

comparison of the Halpin-Tsai equation with numerical micromechanical solutions.  

The reinforcement parameter for the transverse shear modulus 23G for a circular 

fiber embedded in a square array is 

 

                               
2)Gk(

Gk

mm

mm


                                                  (9)                                                          
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Thereafter, Equation (7) may be rearranged to incorporate   as follows 

 

                                           
f

f
m23

V1

V1
GG




                                              (10)                                                                    

 

where 

 

                                                





)GG(

1)GG(

mf

mf                                             (11)                                                            

 

Ensuing research publications [1, 23] invalidate Hermans’ [20] and therefore 

Halpin-Tsai’s approximation [1] of the transverse shear modulus on the basis that 

Hermans mistakenly assumed that the state of strain in the fiber phase is uniform.  

However, numerous published experimental and numerical results (see [12], for 

example) are in acceptable agreement with Halpin-Tsai’s approximation.  Thus, the 

Halpin-Tsai equation is still widely employed in composite design. 

 

1.2.2    Christensen Model 

Christensen and Lo [2] extended the SCS model to include a third, outer 

cylindrical phase composed of an equivalent homogeneous material to predict the 

effective approximation of the transverse shear modulus of a transversely isotropic 

composite.  In his work, Christensen sought to address Hermans’ assumption that 

the “state of stress in the fiber phase is uniform in shear” [2], as briefly discussed in 

Section 1.2.1.  The Christensen model is depicted in Figure 5. 
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Figure 5 – Three-Phase Model of a Fiber-Matrix Composite RVE 

 

Similar to the generalized SCS, the model consists of a composite cylinder 

surrounded in an infinite, macroscopically homogeneous medium, whereby the 

equivalent cylinder possesses the same average properties as the fiber-matrix 

composite.  To determine the transverse shear modulus, Christensen made use of 

the expression for strain energy U which represents the total strain energy stored in 

the model.  The goal is to solve for G23 of an equivalent homogeneous medium, such 

that the homogeneous cylinder stores the same amount of energy U as the fiber-
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matrix composite.  Utilizing energy equivalency relations, the energy statement 

carries the final form 

 

                     0bd]uuuu[ br
0

er
0
r

2

0
ree

0
rre

0
r  



                       (12) 

 

where 

 0
r Normal Stress at infinity in the homogeneous medium 

  
0
r Shear Stress at infinity in the homogeneous medium 

 0
iu Displacement at infinity in the homogeneous medium (  ,ri ) 

  
0
r  Normal Stress of equivalent homogeneous medium (  ,ri ) 

 ieu  Displacement of equivalent homogeneous medium (  ,ri ) 

 

As with Halpin’s [1] relations in Equations (5a - c), plane strain conditions are 

assumed.  Assuming conditions of simple shear at infinity in the homogeneous 

medium, it follows that 

 

                                                2cos0
r                                                                  (13a)                                                                                         

                                               2sin0
r                                                   (13b)                                                                

 

Successive calculations determined from the conditions of compatibility, 

continuity, equilibrium of forces, and Hooke’s Law gives the following stresses and 

displacements as a function of r and   of the equivalent homogeneous cylinder: 

 

                                               ),r(uu rere                                              (14a)                                                                                   
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                                              ),r(uu ee                                              (14b)                                                                                

                                               ),r(rere                                             (14c)                                                                                       

                                                                  ),r(erer                                                  (14d)                                                       

 

 Substituting well known relations of elastic constants for unknown constants 

in Equation (12), along with replacement of these newly derived relations in 

Equations (13a - b) gives the governing quadratic equation for the effective 

transverse shear modulus G23 as: 
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where A, B, and D [2] are given by: 
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ir radius of ith constituent phase, and 1ir  radius of (i-1)th constituent 

phase. 

Additionally the following terms are defined as 

 1jG Transverse Shear Modulus of the (j-1)th equivalent homogeneous 

cylinder (j = 1,…,n and  j  = 1 is the first homogeneous cylinder following 

the innermost fiber phase) 

 iG  Transverse Shear Modulus of the ith constituent phase 

 1jk  Plane Strain Bulk Modulus of the (j-1)th equivalent homogeneous 

cylinder (j = 1,…,n and  j  = 1 is the first homogeneous cylinder following 

the innermost fiber phase) 

 ik  Plane Strain Bulk Modulus of the ith constituent phase 

 

1.3 Predictive Models of Transverse Shear Modulus for Fiber with 
Interphase 
 
During the manufacturing of composites with cylindrical inclusions, a bonding 

reaction transpires through a diffusion process at the fiber-matrix boundaries.  As a 

result, marked by transition zone between both constituent materials, an interfacial 

layer called the interphase is created (see Figure 6).  Several authors have 

developed micromechanical models for studying the elastic behavior of continuous 

fiber-reinforced composites with inclusion of an interphase.  Wacker, et. al. [22] 

suggested that such an interphase is nonhomogeneous where the interphase has 

“elastic properties which are changing with the radial distance from the fiber 

boundary” [22].  Interphase layers may also be intentionally introduced to alter the 
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mechanical properties of the composite.  These coatings may be either 

homogeneous, that is consisting of uniform elastic properties throughout the volume 

of the interphase, or nonhomogeneous [4].  In another study, Garapati [4] assumed 

that the “interphase region might have multiple regions of chemically distinct layers” 

[4], which essentially describes a quasi nonhomogeneous region consisting of 

discrete homogeneous layers.  Delale and Erdogan [6], Erdogan [7], and Kaw, et. al. 

[8] developed micromechanics models with nonhomogeneous interphases in which 

the elastic moduli of the interphase was assumed to vary exponentially along the 

radial thickness of the interphase.  Bechel and Kaw [8] modeled the interphase as an 

arbitrary piecewise continuous function along the thickness of the annular-cylindrical 

inclusion.  The latter model by Bechel and Kaw [8] is adopted in the approximation 

model of this study. 

Garapati [4] provided mathematical models for calculating the elastic moduli 

of an interphase region that varies both linearly and exponentially along the radial 

thickness of the interphase layer.  A symbolic representation of the interphase region 

along with relevant description of terms is shown in Figure 6.  

The model adopted in this paper includes an interphase model for which the 

elastic moduli vary linearly through the radial distance.  Garapati developed the case 

of linearly varying elastic moduli along the radial thickness in which the Young’s 

modulus and Poisson’s ratio are given by: 

 

                                             bra)r(E  , for if rrr                                (23) 

 

and 

                                           drc)r(  , for if rrr                                                 (24) 
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where a,b,c, and d are determined by substituting values of E and ν into Equations 

(23) and (24) at the edges of the boundary at r = rf and r = ri. 

 

 
 

Figure 6 – Schematic Diagram of the Fiber-Interphase-Matrix Composite 
Model 

 
 
 

As mentioned previously, a nonhomogeneous interphase may be discretized 

by assuming the region consists of discrete intervals of N subregions and equal 

annulus thickness ti.  In such a case, the Young’s modulus and Poisson’s ratio of each 

interval are formulated by the following expressions: 
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where )j(i is the Poisson’s Ratio of the jth sublayer of the interphase, and )j(iE is the 

Young’s modulus of the jth sublayer of the interphase.  Additionally, j = 2,…, n, n+1 

and i is the subscript for the interphase.  Note that j = 2 denotes the first sublayer of 

the interphase following the fiber, and j = n+1 denotes the matrix phase. 

Several studies have been performed to determine interphase thickness.  As 

pointed out by Gohil and Shaikh [10], it has been observed from literature that the 

maximum interphase thickness of fiber reinforced composites is up to 10-13% of the 

fiber radius.  In view of the observed measurements Gohil [10] defined the 

parameter 

 

                                                            
f

i

r

t
a                                                    (27) 

 

where 0.01 ≤ a ≤ 0.15.  Here the parameter a in Equation (27) is the ratio of 

interphase thickness-to-fiber radius. 

 

1.3.1    Sutcu Model 

Sutcu [3] developed a recursive concentric cylinder model for predicting the 

transverse shear modulus G23 for continuous, uniaxially aligned fibers with multiple 
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homogeneous interphases.  Each interphase layer is approached as an annular 

cylinder (also called hollow cylinder), with the fiber being the innermost cylinder.  

The basic approach begins with the innermost two cylinders, and then replacing the 

interphase and the fiber assembly with an equivalent homogeneous solid cylinder at 

each step.  The effective elastic properties are then calculated utilizing the 

Christensen approximation for G23, as governed by Equation (15).  This process is 

repeated until all interphase layers (including the matrix) are incorporated into one 

homogeneous medium.  Figure 7 shows a visual representation of the Sutcu model. 

The expression provided by Sutcu [3] and derived from the Christensen [2] 

Equation (15) for the effective transverse shear modulus is: 

 

                     
)A(

)ACBB(
GG

2

j,23j,23



                                        (28) 

 

where j,23G is the effective transverse shear modulus of the composite cylinder up to 

and including the jth sub-layer, where j = 2,…,n, n+1, and j = 2 is the first sublayer 

following the fiber as is seen in Figure 7, and j = n+1 denotes the matrix phase.  

j,23G
 
is the modulus of the isotropic constituent phase being replaced.  As was the 

case with the Christensen model, A, B, and C are defined by Equations (16), (17), 

and (18).  Additionally, note that in contrast to the quadratic expression (15) by 

Christensen, only the physically meaningful root was extracted.  
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Figure 7 - Sutcu Recursive Concentric Cylinder Model 

 

 

1.4 Scale Effects of Finite Domain Models 

 A significant amount of research available in literature [1, 2, 3, 20] makes 

use of a single RVE embedded in an infinite composite medium.  As explained in 

Sections 1.2.1 – 1.2.2 such RVEs typically consist of a single cylindrical fiber (and 



www.manaraa.com

21 
 

possibly hollow interphase cylinder) embedded in a volumetrically proportionate 

matrix of specific geometric shape (hollow cylinder, or square cuboid with cylindrical 

cut-out).  Thereafter, effective properties of the RVE are obtained by various 

analytical models such as the heretofore outlined method.  This approach, however, 

fails to address elastic properties defined in finite domains as the domain size is 

either increased or decreased.    This is specifically relevant to Finite Element 

Analysis (FEA), as simulation models in this approach utilize models with finite 

boundaries, which are influenced by these so called scale effects. 

The goal of this research is to incorporate considerations of scale effects as it 

pertains to FEM models that were developed for attaining approximations of the 

transverse shear modulus of a composite domain.  Jiang [21] suggested that the 

elastic properties depend on the size of the domain of a finite-sized model.  The 

domain as such is called a window and may be placed anywhere in a domain 

consisting of multiply-bonded composite unit cells.   Jiang defined the following 

parameter as a measure of window size relative to the larger domain: 

 

                                                                          1
d

L

f

                                             (29) 

 

where L denotes the length of a square window, and df describes the fiber diameter 

of the composite RVE.  Figure 8 illustrates a window placed over a periodic domain of 

axially aligned, continuous fibers.  

Jiang [21] observed a convergence of elastic properties of a finite domain 

with uniaxially, aligned cylindrical fibers embedded in a finite matrix medium, subject 

to displacement and traction boundary conditions (applied separately), when the 

window size was altered.   
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Figure 8 – Window Parameter δ Subject to Varying Scales 

 

 

Wang [11] studied the effects window size of an FEA model as part of his 

study of human bone composites, and tabulated results of the numerically derived 

transverse shear modulus, which indicated a decrease in modulus value with 

increasing window size, and in conjunction with increasing fiber-to-matrix Young’s 

Modulus ratio, Ef/Em.  Of the parameters studies, the Ef/Em ratio was observed to 

have the largest impact on the modulus value.  Wang found additionally that fibers 

located on the boundary of the window accounted for a large difference in apparent 

elastic moduli. 
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1.5 Random Transverse Fiber Arrangement  

Traditionally, companies and institutions have invested considerably in 

determining the physical characteristics of fiber reinforced materials through 

experimental means.  Gusev, et. al. [12] described the arrangement of actual 

composites quite succinctly by stating that reinforced cylindrical fibers in composite 

sample specimens vary in diameter and shape, and form an “infinite variety of local 

packing arrangements” [12].  It was therefore stipulated that the aforementioned 

laboratory samples are statistically homogeneous in the sense that the properties of 

one sample is indistinguishable from another.  Researchers have developed varied 

micromechanical models [10, 12, 13] that attempt to accurately predict the elastic 

constants of randomly, transversely arranged, uniaxially-aligned fiber reinforced 

composites.  Through numerical two-dimensional (2-D) FEA simulation, Gusev 

concluded [12] that random fiber arrangements in a finite domain had a significant 

influence on the transverse shear modulus, while varying the fiber diameter 

distribution did not.  A calculated average difference in G23 of 6.7% was recorded 

between numerical 2-D models of a periodic and random hexagonal array. Note that 

the phrase “2-D model” refers to a plane strain assumption. 

In a related study, Wang, et. al. [13] developed a procedure to generate a 2-

D RVE model based on a randomization of the transverse arrangement of multiply 

bonded RVEs, with each RVE consisting of a uniaxial fiber embedded in square 

matrix.  The procedure involved translating even (odd) numbered rows (columns) 

that are originally arranged in a periodic array by a randomly selected increment in a 

specific coordinate direction.  Additional randomization was achieved by translating 

each fiber by a random increment within the RVE itself.  An ensuing study by Wang, 

et. al. [14] studied the random transverse arrangement of fiber reinforced 

composites with inclusion of homogeneous interphase. Results indicated a strong 
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interdependence of interphase properties on the random fiber arrangement of finite 

domains.  In  particular, a relatively “weaker stiffening effect is observed” [14] in the 

transverse Young’s modulus of randomly aligned fiber composite models, as the 

interphase-to-matrix ratio was reduced incrementally from 20, 30, to 40.  Thus, 

Wang concluded that a “reduction in interphase thickness provokes a reduction in the 

effective modulus of the composites” [14]. 

 

1.6 Angular Fiber Misalignment of Uniaxial Continuous Fiber Reinforced 
Composites 
 

Uniaxially-aligned continuous fibers have been observed to have been 

misaligned incrementally from their preset fiber direction.  Yurgartis [15] measured 

the angular misalignment of carbon-fiber reinforced aromatic polymer (APC-2) 

composites and determined that the majority of fibers are oriented within ±3° of the 

mean fiber direction, having a standard deviation of the sample distribution ranging 

from 0.693° to 1.936°.  Furthermore, 83% of the sample distribution exhibited a 

fiber inclination within ±1°. 

Much debate still exists on the cause of angular fiber misalignment, however, 

Swift [16] lists several potential causes due to manufacturing processes of 

continuous fiber composites, such as “machine vibration during filament winding” 

[16], and “non-uniform curing and cooling shrinkages” [16], among other causes.  It 

is therefore postulated in this thesis that fiber misalignment has a significant 

influence on the elastic properties of fiber reinforced continuous composites.  Further 

studies [16, 17] reported on the effect of fiber misalignment on the physical 

properties of short and long fiber composites.   
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The objectives of this thesis are as follows: 

 The purpose of this thesis is to identify and present the state-of-the-art 

numerical model for determining the transverse shear modulus of aligned, 

quasi-continuous long-fiber composites.  

 Furthermore, this thesis seeks to evaluate the impact of a random 

distribution of angularly misaligned fibers in uniaxial, continuous fiber 

reinforced composites on the transverse shear modulus through three-

dimensional numerical modeling and evaluation.  While studies by Swift 

[16], Phelps and Tucker [17], and Yurgartis [15] have effectively observed 

and measured fiber misalignments in short and continuous fiber 

composites, and have studied possible causes of fiber misalignment [16], 

this thesis seeks to investigate and evaluate the impact of angular fiber 

orientation on the transverse shear modulus numerically through the use of 

three-dimensional FEA models.   

 Another objective of this study is to assess the effect of random transverse 

fiber distribution in uniaxial, continuous fiber reinforced composites on the 

transverse shear modulus through three-dimensional numerical modeling 

and evaluation.  Previous studies [12, 13] evaluated the impact of random 

vs. periodic 2-D arrays for fibers with no interphase, and Wang [14] 

evaluated the impact of random vs. periodic 2-D arrays for fibers with 

homogeneous interphase. 

 Yet a further objective is to gauge the impact of variation of scale effects of 

periodic and transversely arranged and angularly misaligned random-

periodic FEA models on the transverse shear modulus G23.  While other 

studies [11, 21] assessed scale effects on the transverse shear modulus 
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through numerical modeling of 2-D arrays, this thesis seeks to evaluate the 

impact of scale effects on G23 of 3-D domains. 

 Lastly, this thesis seeks to examine the predictive potential of the model 

developed by Sutcu [3] for composites with interphases, and models by 

Halpin-Tsai [1] and Christensen [2] for predicting the transverse shear 

modulus of unidirectional composites without interphases.  Previous work 

by Gusev [12] compared numerical averages to predicted G23 values of 

random and periodic 2-D arrays for fibers with no interphase.  In contrast, 

this study compares numerical averages of 3-D arrays of composites with 

no interphase, and fibers with homogeneous and nonhomogeneous 

interphases to predictive models. 
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CHAPTER 2   FORMULATION 

 

2.1     Finite Element Modeling 

The FEA software ANSYS [18] was selected for performing simulations in this 

study.  This program was chosen due to its capability of solving three-dimensional 

(3-D) linear elasticity problems.  The model presented here consists of a 3-D finite 

domain subjected to displacement loads at its boundaries. 

 

2.2     Geometric Design 

The basis of the finite element model is the unit cell, or RVE.  Thereafter, an 

array of cells bound by a domain with finite boundaries consists of multiply-bonded 

RVEs located in a square arrangement (see Figure 8).  In the present study, 

simulations are developed and executed on single RVEs, as well as multiply-

connected RVE cells as periodic and random-periodic arrays, which will be described 

in more detail in Sections 2.2.1 – 2.2.3.  The RVEs developed for the present study 

are depicted in Figure 9.   

Figure 9 depicts a fiber reinforced composite consisting of a cylindrical fiber 

embedded in a square cuboid matrix (Figure 9a), a domain consisting of nine 

multiply connected RVEs in a square arrangement (Figure 9b), and domain consisting 

of 25 multiply connected RVEs in a square arrangement (Figure 9c). 
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Figure 9 – Finite Element Models Developed in ANSYS. From Left (a) Single 

RVE, (b) 9-Cell Array, and (c) 25-Cell Array [18] 
 

 

2.2.1     Periodic Array of Variable Domain Size 

 The influence of scale and free-edge effects on the elastic properties of 

composite materials was discussed in chapter 1.4.  In view of the findings developed 

in the studies mentioned therein, multiple models are constructed in this study 

consisting of arrays of incrementally increasing domain sizes.  The same method is 

employed to achieve varied domain sizes as outlined in Section 1.4.  In addition to 

simulating a single RVE model, a 9-cell (3 x 3) and 25-cell (5 x 5) are designed and 

constructed as shown in Figure 9.  The respective domain-to-fiber diameter ratios 

are: 

 

                                                  0Cell1                                                      (30) 
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                                                  0Cell9 3                                                   (31) 

 

                                                                      0Cell25 5                                                  (32) 

 

Each multi-cell model consists of perfectly bonded RVEs that are arranged in a 

square array (Figure 9).  The purpose of the design of the aforementioned three-

dimensional models is to study the influence of scale and free-edge effect on the 

transverse shear modulus.    

 

2.2.1.1     Inclusion of Mesoscale Window 

In addition to studying the transverse shear modulus over the entire domain 

volume, the volumetrically averaged transverse shear modulus is evaluated over a 

centrically isolated mesoscale window, which is the size of a single RVE and is 

located in the center of the 9-cell and 25-cell model, respectively.  A functional 

schematic thereof is illustrated in Figure 10. 

The goal of this procedure is to further study the influence of the free-edge 

effect on the transverse shear modulus by evaluating a single, isolated RVE that is 

not subject to any free surface, as well as to study the effect of the shear modulus 

value with increasing distance from the free edges of the domain. 

 

2.2.2     Transversely Random-Periodic Array of Variable Domain Size 

The models introduced up this conjuncture describe solely a periodic array 

consisting of multiply-connected RVEs.  In the preceding arrangement, each RVE is 

considered in perfect uniaxial alignment along the longitudinal axis, and each fiber is 

centrically located within each individual matrix cuboid (see Figure 8).  In contrast, 

consider the case in which the fiber or the fiber-interphase composite cylinder is 
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shifted a discrete random increment in the transverse plane.  Figure 11 illustrates 

the foregoing concept schematically.  

 

 
 

Figure 10 – Centrically Isolated Mesoscale Window of a 9-Cell Domain 
  

 

In this case, the fiber (fiber-interphase) is translated a random distance in 

both the x and y direction according to the relation 

   

                                          10Fiber ckxx                                              (33) 

 

                                                              20Fiber ckyy                                               (34) 

 

where Fiberx and Fibery  denote the transverse translation of the fiber center in the x 

and y direction, respectively, x0 and y0 describe the initial fiber location, k is a 

random number ranging from -10 to 10, and c1 and c2 are arbitrary constants.  
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Translation increments vary from zero to a location very near the edge of the matrix.  

The translation distance limit was set at a point in the plane beyond which 

topological degeneracy of the model is detected by ANSYS.  That is, two keypoints 

(points that outline the shape of a volume), one describing the contour of the matrix 

at a point , the other the contour of the fiber, can no longer be analyzed numerically 

as two separate keypoints by ANSYS due to their relative proximity.  Therefore, the 

cylindrical inclusion is randomly rearranged in the transverse plane from its default 

centric location to a point right near the edge of the square matrix. 

 

 
 

Figure 11 – Incremental Fiber Translation in the Transverse Plane of an RVE 
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2.2.3     Angular Random-Periodic Array 

Similarly to moving the cylindrical inclusions transversely along a plane, the 

following model developed allows angular rotation of fibers in three dimensions 

within the boundaries of the square cuboid RVE, as is displayed schematically in 

Figure 12. 

 
 

 
 

Figure 12 – Angular Fiber Rotations in Three Dimensions Within the RVE  
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Here, the center of the cylindrical inclusion is hinged at the intersection with 

the lower transverse boundary plane and rotated by random angular increments 

about the x, y, and z global axes of the RVE, respectively.  The term n denotes the 

unit normal of the plane perpendicular to the inclined fiber.  Each cylindrical inclusion 

is rotated about each respective axis according to the relations: 

 

                                              3Fiber ck                                                   (35) 

                                                                  4Fiber ck                                                   (36) 

                                              5Fiber ck                                                   (37) 

 

where k denotes a random number ranging from -10 to 10, and c3, c4, and c5 are 

arbitrary constants.  Rotation increments vary from zero to any point very near the 

boundary of the RVE.  The angular rotation limit is determined due to the 

aforementioned onset of topological degeneracy of the model. 

In the model presented here, the maximum misalignment angle is 0.143°.  

However, as mentioned in Section 1.6 of this study, previous literature [15] suggests 

a misalignment range of ±3° for long, axially aligned fiber reinforced composites, 

whereby 83% of the sample distribution was observed to vary between ±1°.  

Unfortunately, limitations of the present model do not allow for any fiber rotation 

past 0.143° due to the aforesaid degeneracy effects in ANSYS.  Furthermore, the 

randomization technique does not follow the sample distribution curve.  That is to 

say, a random number is equally weighted in its probability of being selected out of a 

pre-determined range of integers, in lieu of employing a randomization procedure 

that is in accordance with the sample distribution curve (i.e. 83% of all random 

numbers drawn will equate to an angle within ±1°, etc.).   
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2.3     Meshing of Geometry 

As outlined in the previous section, multiple models are developed for load 

simulation in ANSYS [18].  All models are meshed using element Solid185, which is 

used for modeling of 3-D structures.  Solid185, shown in Figure 13, is comprised of 

eight nodes at its corners, each node having three degrees of freedom in the x, y, 

and z directions. 

 

 

Figure 13 – Schematic Representation of ANSYS Element SOLID185 [18] 
 

 

While the element has “plasticity, hyperelasticity, stress stiffening, large 

deflection and large deflection responses” [18], all simulations executed in this thesis 

assume linear elastic behavior. 
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2.3.1     Contact Surface Bonding 

 The surface areas of all models between fiber, interphase, and matrix are 

considered perfectly bonded for the purpose of this study.  The bonding method 

involves merging of coincident keypoints of neighboring volumes.  The ANSYS merge 

command, termed NUMMRG, is issued for merging separate but coincident 

components of a model together. 

 

2.4      Material Properties 

 

2.4.1     Fiber and Matrix 

The material chosen for this study is a glass/epoxy composite consisting of 

glass reinforcement fibers and an epoxy matrix.  The two elastic moduli required for 

conducting linear elastic analysis (excluding thermal) of isotropic, homogeneous 

constituents are Young’s modulus E and Poisson’s ratio ν.  Values for E and ν for both 

fiber and matrix are extracted from literature [19] and tabulated as follows. 

 

Table 1 – Fiber and Matrix Isotropic Elastic Moduli [19] 
 

Material 
Young's Modulus, E 
(GPa) 

Poisson's Ratio, ν 

Glass Fiber 85 0.2 

Epoxy Matrix 3.4 0.3 

 

 

In addition, it should be noted that the volumetric fraction of fiber to matrix 

used for this study is Vf = 0.55.  This fiber volume fraction was chosen due to its 

closeness to actual measured fiber volume fractions from literature [12].  Gusev [12] 

reported a measured nominal fiber volume fraction of Vf = 0.54 ± 0.01.  Glass/Epoxy 
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was selected as the composite material because both constituent materials are 

isotropic and thus lend itself well to numerical analysis, as well due to its widespread 

use in various industries (see [19] for examples).  

 

2.4.2     Interphase 

 

2.4.2.1     Interphase Design 

Two separate interphase models are developed for this study.  A single 

homogeneous interphase and a nonhomogeneous interphase consisting of four 

perfectly bonded homogeneous interphase sublayers are considered.  Section 1.3 

highlighted commonly selected interphase thicknesses used in related numerical 

studies.  The interphase thickness is a fraction of the fiber radius, and for the 

purpose of this study, the interphase thickness-to-fiber radius ratio (IFR) for both the 

homogeneous and non-homogeneous case is related by the respective expressions: 

 

                                                       
f

i
H

r

t
IFR                                                  (38) 

and 

 

                                                    
f

i
NH

rn

t
IFR


                                              (39) 

 

where it and fr describe the interphase thickness and fiber radius, respectively, and n 

denotes the number of interphase sublayers.  A graphical schematic depicting each 

interphase model is depicted in Figure 14. 
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Figure 14 – Interphase Models. From Left (a) Single Homogeneous 

Interphase and (b) Single Nonhomogeneous Interphase Approximated by 
Interphase Layers 

 

 

Thus, it is clear that the interphase sublayers in the case of a four sublayer 

interphase consist of equal thicknesses t/4.  For the present study, an interphase 

thickness of fi r
10

1
t  is chosen.  

 

2.4.2.2     Interphase Material Properties 

The method developed by Garapati [4] as outlined in Section 1.3 for linear 

variation of Young’s modulus and Poisson’s ratio is adopted here for determining the 

properties of both interphase models.  Given a linear variation of properties through 

the radial thickness, the resulting values of E and ν are shown in Table 2. 
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Table 2 – Interphase Isotropic Elastic Moduli 
 

Interphase Type Young's Modulus, E (GPa) Poisson's Ratio, ν 

Single Interphase 44.2 0.250 

Four-Layer Interphase:      

    Layer 1 74.8 0.213 

    Layer 2 54.4 0.238 

    Layer 3 34.0 0.263 

    Layer 4 13.6 0.288 

 
 
 
2.5     Boundary Conditions 
 
 
 
2.5.1     Volumetric Averaging 
 

To obtain the transverse shear modulus numerically, it is necessary to 

determine a volumetric average value.  In so doing, it is required to establish local 

stress and strain fields of each element within the domain δ.  The concept of strain 

energy aids in the solution of volumetrically averaged elastic properties, which per 

Wang [11] is defined as the elastic strain energy stored within the entire body, and 

is given by the relation 

   

                                V21dV21U ijij

V

ijij                                     (40) 

 

where ij and ij  denote stress and strain tensors, respectively, and V describes the 

volume of the domain.  The bar accent denotes volume averages.  The average 

stress and strain can resultantly be written as 
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                                                      dVV1 ijij                                           (41) 

                                                      dVV1 ijij                                            (42) 

 

It should be pointed out that the stress and strain terms are expressed in 

tensor notation.  Alternatively, the expressions in Equations (41) and (42) may also 

be written in conventional notation, and may be expressed by the relations: 

 

                                                                        dVV1 ijij                                              (43) 

 

                                                    dVV1 ijij                                              (44) 

 

In terms of finite element formulation, it is evident from Equations (43) and 

(44) that volume averaging is achieved by summing the stresses and strains in each 

element, multiplied by the respective element volume according to the relations 

 

                                            
V

)v(
n

1k kij

ij
k 


                                              (45) 

 

                                            
V

)v(
n

1k kij

ij
k 


                                              (46) 

 

Here, kv denotes the volume of each element ranging from k = 1, 2,…, n, and 

n = number of elements. 
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2.5.2     Displacement Conditions 

To compute the apparent elastic transverse shear modulus, homogeneous 

displacement conditions are imposed on the boundary of the domain as follows: 

 

                                                                2
0
232 x)x(u                                                   (47) 

 

                                                                3
0
233 x)x(u                                                   (48) 

 

where 0
23 represents uniform shear strain (in tensor notation) applied at the 

boundaries of the domain, as is illustrated in Figure 15.  The applied boundary 

conditions represent a condition of pure shear loading, meaning that all other strain 

terms at the boundary vanish.  

 
 
 

Figure 15 – Single RVE Subject to Pure Shear Displacement Boundary 
Conditions 

w 

w 
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Figure 15 shows the top view of a three-dimensional single cell RVE with a 

fiber, a single interphase, and a square matrix subject to pure shear displacement 

boundary conditions.  The term xn (n = 2,3) represents the coordinate along the 2 or 

3 axis, and w denotes the width of the square matrix. 
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CHAPTER 3   RESULTS 

 

3.1     Transverse Shear Modulus of a Periodic Array 

 

3.1.1     Effects of Variable Domain Size 

As has been characterized in section 2.2.1, a periodic model consisting of 

cylindrical fibers embedded in square cuboid matrices can be represented with 

repeating RVEs, where each RVE is the smallest characteristic volume that contains 

the same material properties and geometry as the entire composite medium.  In this 

section, the apparent transverse modulus G23, obtained by applying boundary 

conditions, was observed to deviate when the domain size is increased from a single 

RVE unit cell to 9-cell domain, and finally a 25-cell array.  Further distinction was 

made between interphase types of each domain.  Volume averages were determined 

for domains with no interphase, homogeneous interphase, and with 

nonhomogeneous interphase.  In addition, percentage differences between 

numerically determined transverse shear modulus averages and G23 values predicted 

with Sutcu’s model were evaluated.  

This study should provide insight into understanding the importance of 

domain size selection in numerical finite element analysis as it pertains to 3-D 

models.  Illustrated in Figure 16 is a 25-cell domain subject to pure shear 

deformation.  The graphical representation by ANSYS depicts the deformed body 

(shown in blue) as well as the undeformed edges prior to application of loads 

(dashed lines). 
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Figure 16 – FEA Simulation of a 25-Cell Array.  From Top (a) Top View of 

Deformation and (b) Deformation in 3-D Isometric View [18] 
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Subsequent numerical analysis yielded the following results. 

Table 3 - Volumetrically Averaged Transverse Shear Modulus G23 of Periodic 
Array Models 

 

Interphase Type Domain Size G23 [GPa] |%∆|* 

No Interphase 

1-cell 4.364 - 

9-cell 3.361 29.8 

25-cell 3.284 2.3 

Homogeneous Interphase 

1-cell 6.025 - 

9-cell 4.524 33.2 

25-cell 4.408 2.6 

Nonhomogeneous 

Interphase 

1-cell 5.920 - 

9-cell 4.436 33.5 

25-cell 4.322 2.6 

*Percentage difference with Sutcu Model. 
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Figure 17 – Volumetrically Averaged Transverse Shear Modulus G23 of 
Periodic Domain Models 

 

 

All three array configurations exhibit a decrease in moduli with incrementally 

increasing domain size.  Table 3 indicates a significant drop off from the single cell 

RVE to the 9-cell domain.  Figure 17 indicates a convergent response as domain size 

is continually increased, as the slope of the curve lessens. 

 

3.1.2     Effects of Centrically Isolated Mesoscale Window    

The impact of calculating the volumetric averages of a centrically isolated 

mesoscale window on the transverse shear modulus was evaluated. 
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Table 4 - Volumetrically Averaged Transverse Shear Modulus of Centrically 
Isolated Mesoscale Window of Periodic Array Models 

 

Interphase Type 
Domain 

Size 
G23 [GPa] |%∆|Complete Domain vs. Window 

No Interphase 

1-cell 4.364 0.0 

9-cell 3.349 0.4 

25-cell 3.258 0.8 

Homogeneous 

Interphase 

1-cell 6.025 0.0 

9-cell 4.510 0.3 

25-cell 4.368 0.9 

Nonhomogeneous 
Interphase 

1-cell 5.920 0.0 

9-cell 4.423 0.3 

25-cell 4.283 0.9 

 

 

Table 4 compares the percentile change in modulus values, obtained by 

calculating the volumetric averages over the entire domain volume as compared to 

numeric averages of the center RVE volume (of the same domain) only.  The results 
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indicate a marginal increase in moduli with all simulated scenarios.  The effect of 

isolating the center unit cell appears to be less profound than altering domain size. 

 

3.2     Transverse Shear Modulus of Random-Periodic Arrays 

 

3.2.1     Transversely Random Arrangements 

In light of the findings presented thus far, it is of interest to investigate the 

effect of transversely random-periodic fiber arrangements on the transverse shear 

modulus.  Gusev [12] shows SEM micrographs of glass/epoxy composites that 

revealed a random distribution of fibers in the transverse plane.  Subsequent 

numerical simulations showed a significant sensitivity in the value of G23 (deviation 

of 6.7% between numerical models of a periodic vs. random array). However, the 

FEA model used by Gusev was two-dimensional under plane strain conditions.  The 

results presented in Figure 18 and Table 5 that follow represent a 3-D model, and 

the cylindrical inclusions of which are considered to be quasi-continuous long-fibers 

with a fiber length-to-matrix width ratio of 10:1. 

 

Table 5 - Volumetrically Averaged Transverse Shear Modulus G23 of 
Transverse Random-Periodic Array Models 

 

Interphase Type 
Domain 

Size 
G23 [GPa] |%∆|Periodic vs. Random 

Nonhomogeneous 
Interphase 

1-cell 6.063 2.4 

9-cell 4.711 5.8 

25-cell 4.388 1.5 
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Figure 18 - Volumetrically Averaged Transverse Shear Modulus G23 of 
Transverse Random-Periodic Array Models 

 

 

The results indicate a moderate variation in stiffness when compared to a 

periodic model of equal domain size.  A maximum deviation of 5.8% was detected 

for the 9-cell model.  Moreover, the data indicates an extenuation in the sensitivity of 

the response with domain expansion as the percent difference dwindles to a mere 

1.5% for the 25-cell array. 

 

3.2.2     Angular Random Arrangements 

Section 1.6 summarized research studies which indicated the existence of 

slight angular misalignments of uniaxial, aligned fiber reinforcements in composites.  

Gusev [12] observed misalignment angles of ±1° of 83% of a Carbon-APC composite 
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sample distribution.  The volumetrically averaged G23 values of randomly misaligned 

fibers of angles up to ±0.143° are given in the data set that follows. 

 

Table 6 - Volumetrically Averaged Transverse Shear Modulus G23 of Angular 
Random-Periodic Array Models 

 

Interphase Type 
Domain 

Size 
G23 [GPa] |%∆|Periodic vs. Random 

Nonhomogeneous Interphase 

1-cell 5.927 0.1 

9-cell 4.419 0.4 

25-cell 4.334 0.3 

 
 
 

 
 

Figure 19 - Volumetrically Averaged Transverse Shear Modulus G23 of 
Angular Random-Periodic Array Models 
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The findings indicate marginal sensitivity toward the shear modulus, which is 

expected given the small degree of change in polar fiber orientation.  A maximum 

deviation of 0.4% was detected for the 9-cell model.  Similarly to the transverse 

random-periodic domain simulations, the data indicates an extenuation in the 

sensitivity of the response with domain expansion as the percent difference dwindles 

to a mere 0.3% for the 25-cell array. 

 

3.3     Comparison with Theoretical Approximations 

Table 7 lists predictions of three micromechanical models introduced in this 

report (Halpin-Tsai [1], Christensen [2], and Sutcu [3]). 

 

Table 7 - Transverse Shear Modulus G23 of Common Predictive Models 
 

Volume Averages of Periodic Arrays 

Interphase Type 
Domain 

Size 
Domain 
Scale 

G23 [GPa] 

Current 
Model 

Christensen
/Sutcu*1  

Halpin-
Tsai 

No Interphase 25 
Center 

Cell 
3.258 

3.807 
(14.4%)*2 

3.504 
(7%)*2 

  

Homogeneous 
Interphase 

25 
Center 

Cell 
4.368 

4.560 
(4.2%)*2 

- 

  

Nonhomogeneous 
Interphase 

25 
Center 

Cell 
4.283 

4.437 
(3.5%)*2 

- 

*1  Sutcu model and Christensen model are identical for composites with no interphase.  

Homogeneous and nonhomogeneous models are approximated by Sutcu model. 

*2  Reflects absolute percent difference from  current model G23 value.  
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3.3.1     Fiber-Matrix Predictive Models 

Predictive models by Halpin-Tsai and Christensen describe the elastic 

response of a single fiber embedded in a cylindrical matrix.  Results indicate good 

agreement with the Halpin-Tsai approximation.  The numerical average for a 25-cell 

model is within 7% of the predicted result.  The Christensen model is in lesser 

agreement with the volumetric averages, but still reflects a moderate closeness 

within 14.3%. 

 

3.3.2     Fiber-Interphase-Matrix Predictive Models 

Listed in Table 7 are predictions by Sutcu’s approximation for cylindrical fibers 

surrounded by a homogeneous interphase layer, as well as for fibers surrounded by 

a nonhomogeneous interphase, respectively, embedded in a cylindrical matrix.  

Numerical results show excellent agreement with predicted values of G23.  The 

homogeneous interphase model is within 4.2% of Sutcu’s result and shows 

convergent behavior with incremental augmentation of interphase layers, as the 

nonhomogeneous shear modulus is within 3.5% Sutcu’s value. 
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CHAPTER 4 – CONCLUSIONS 

 

The purpose of this study was to identify and present the state-of-the-art 

numerical model for determining the transverse shear modulus of aligned, quasi-

continuous long-fiber glass/epoxy composites.  A further objective was the 

evaluation of the impact of variation of scale effects of periodic, and transversely 

arranged and angularly misaligned random-periodic, FEA models on the transverse 

shear modulus G23. Lastly, this study examined the predictive potential of the model 

developed by Sutcu [3] for composites with interphases, and models by Halpin-Tsai 

[1] and Christensen [2] for predicting the transverse shear modulus of unidirectional 

composites without interphases.   

The findings and conclusions are as follows: 

 Among the models simulated, the Halpin-Tsai approximation displayed 

good agreement with volumetric averages determined numerically from a 

25-cell three-dimensional periodic array consisting of fiber-matrix RVEs.   

The numerical average for a 25-cell model is within 7% of the current 

model. It must be emphasized, however, that the Halpin-Tsai model is 

dependent on the reinforcement factor ζ, which varies according to 

geometric cross-section and orientation of the fiber within the matrix.  In 

this study, the reinforcement factor for a cylindrical fiber arranged in a 

square array was chosen.  The Christensen and Sutcu models, on the other 

hand, are independent of such geometric factors and packing 

arrangements.  The Christensen model gives reasonably close results 
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 (14.3% within the current model) as well; however, the predicted value is 

in less relative proximity as compared to Halpin-Tsai’s results.  Sutcu’s 

predictive model shows excellent agreement with FEA models containing 

fibers with interphase layers.  A convergence in proximity was observed 

with piecewise extension of the interphase layers. 

 An increase in domain size was observed to significantly curtail stiffness 

averages.  Modulus values were found to decrease in a convergent manner 

with increasing domain size.  G23 values dropped 33.5% from the 

nonhomogeneous single cell to the 9-cell model, and 2.6% from the 9-cell 

array to the 25-cell model.   

 The effect of mesoscale window proved to influence the modulus only 

marginally in conjuncture with incremental increase in domain size.  

Numerical averages of the complete 9-cell domain deviated only 0.3% from 

the G23 value of the centrically isolated RVE within the same 9-cell domain.  

The percent deviation was observed to increase marginally with increasing 

domain size.  However, the effect of a mesoscale window was yet relatively 

insignificant for the 25-cell domain with a difference of only 0.9%.    

 Simulations involving the transverse translation of random-periodic arrays 

were found to affect modulus values.  However, the impact was seen to 

diminish with increasing domain size.  For random transverse distribution 

of fibers, a difference in modulus of +1.5% was observed for the 25-cell 

array as compared a periodic array of equal size. 

 Values of G23 for fiber reinforced composite arrays subject to random fiber 

misalignments revealed a marginal increase in transverse stiffness for 

random-periodic domains with inclination angles up to ±0.143°.  A 

deviation of +0.3% was predicted for 25-cell arrays subject to random 
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angular fiber misalignments as compared 25-cell periodic arrays.  Similarly 

to transverse random-periodic array simulations, the results indicate a 

diminishing influence of fiber misalignment on values of G23 with increasing 

domain size.  Both transversely arranged and angular random-periodic 

models showed excellent agreement with Sutcu’s predictive model for 

composites comprising fiber-matrix models incorporating a 

nonhomogeneous interphase.  Consequently, in as much the random-

periodic arrangements studied are deemed to affect the shear modulus 

averages moderately for 25-cell domains, deviations are nonetheless in 

close concurrence with Sutcu’s results.
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Appendix B: Permissions 

 
 

 
Figure 9, Figure 13, and Figure 16 are copied figures from or created with the 

software program ANSYS [18], and are permitted for use and display in this thesis 
per the written permission that is shown in the e-mail screen shot in Appendix B. 
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